(1) THE RELATIVE DIAMETERS OF THE PLANETS

Assuming the $\operatorname{Sun}(1,392,000 \mathrm{~km})$ to be 1 meter in diameter:

Object	Actual	(km)
Mercury	4,878	Scale
Venus	12,104	4 mm
Earth	12,756	9 mm
Moon	3,476	9 mm
Mars	6,787	3 mm
Jupiter	142,800	5 mm
Saturn	120,000	103 mm
Uranus	50,800	86 mm
Neptune	48,600	37 mm
	35 mm	

Assuming the Earth to be 100 mm in diameter:

Sun	$1,091 \mathrm{~cm}$	
Mercury	38 mm	
Venus	95 mm	
Moon	27 mm	
Mars	53 mm	
Jupiter	112 mm	
Saturn	94 mm	
Uranus	40 mm	
Neptune	38 mm	

(2) THE RELATIVE DISTANCES OF THE PLANETS

Scale: $25 \mathrm{~cm}=150 \mathrm{million} \mathrm{km}$ (average distance from Earth to Sun)
This scale is selected because the Sun and the known planets can be plotted on a roll of adding machine tape.

On this scale $1 \mathrm{~cm}=6 \mathrm{million} \mathrm{km}$; the Sun is 3 mm in diameter, the Earth. 02 mm and the distance from Earth to the Moon is 64 mm .

The average distances of the planets from the Sun:

Planet	Actual (mil.	Actual $)$ $($ AU*)	Scale
Mercury	57.9	0.39	10 cm
Venus	108.2	0.72	18 cm
Earth	149.6	1.00	25 cm
Mars	227.9	1.52	38 cm
Jupiter	778.3	5.20	1.3 m
Saturn	$1,429.4$	9.56	2.4 m
Uranus	$2,875.0$	19.22	4.8 m
Neptune	$4,504.0$	30.11	7.4 m

* Astronomical Unit 1 AU = Average Earth to Sun distance
(3) RELATIVE DISTANCES IN THE UNIVERSE

On the scale used in example 2, 1 light year (the distance light travels in one year -- 9 trillion km) would be 12 km , the distance to the nearest star other than the Sun would be 64 km , the distance to the center of our galaxy would be $480,000 \mathrm{~km}$, the distance to the Andromeda galaxy would be 35 million km and the distance to the farthest known object (a quasar) would be about 200 billion km.

